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Abstract-Based on three-dimensional elastic theory, the nonaxisymmetric free vibrations of a
spherically isotropic spherical shell embedded in an elastic medium are studied in the paper. Three
displacement functions are introduced to simplify the governing equations of a spherically isotropic
medium for free vibrational problem. The Pasternak's assumption is adopted for the elastic medium,
for which the P-( relation in the spherical coordinates is derived by the principle of minimum
potential energy. It is found that the vibration of an embedded spherical shell can be divided into
two classes, as the case in vacuum. The first class is identical to the corresponding one in vacuum,
and the second has changed due to the effect of the surrounding medium. Numerical results are
carried out to clarify the effect of relative parameters. Copyright ([) 1996 Elsevier Science Ltd.

I. INTRODUCTION

Problems of embedded shells and containers have been of great interest because of their
wide usage in practical engineering such as underground mining, subsurface building,
nuclear engineering, etc. Among them, the static and dynamic analyses of shells made of
anisotropic materials are becoming more and more important with the increasing use of
new types of high-strength composite materials in such areas. There are a lot of papers
published that are related to problems of embedded shells. Nowinski (1957) generalized
Galerkin's problem (Galerkin, 1952) to an orthotropic tube subjected to any axisymmetric
temperature field. He further studied the thermoelastic problems of a spherically isotropic
hollow sphere embedded in an elastic medium, which was treated as a Winkler material
(Nowinski, 1959). Nath et al. (1987) employed Von Karman-Donnell type nonlinear partial
differential equations of motion to analyse the nonlinear dynamics of shallow shells on
elastic foundation of Pasternak type. Upadhyay and Mishra (1988) dealt with the non­
axisymmetric dynamic behavior of buried orthotropic cylindrical shells excited by a com­
bination ofP, SV and SH waves. Duffey and Johnson (1981) obtained the transient response
of a pulsed spherical shell surrounded by an infinite elastic medium, for which the wave
equation for pure radial motion was used. For an isotropic cylindrical shell buried at a
depth below the free surface of the ground, Wong et al. (1986) have given its dynamic
response from the point of view of three-dimensional elastic theory. Paliwal and Bhalla
(1993) studied the large amplitude free vibrations of clamped shallow spherical shells on a
Pasternak foundation using a new approach suggested by Sinharay and Banerjee (1985).
For embedded spherical shell, however, to the authors' knowledge, most researches were
limited to either the simplest cases, e.g. the purely radial vibration or theories based on
various assumptions on the deformations of the shell. It is noted here that Cohen and Shah
(1972) used two auxiliary variables and obtained two classes of vibrations for a spherically
isotropic hollow sphere in vacuum on the basis of three-dimensional elastic theory. But
difficulty exists in locating the expressions of displacement and stress components by their
method. Earlier, Hu (1954) gave and expounded a general solution of elasticity for a
spherically isotropic medium in detail. Both papers stimulate authors' interest in the study
of the nonaxisymmetric free vibrations of a spherically isotropic hollow sphere embedded
in an elastic medium.
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Based on three-dimensional elastic theory, three displacement functions are introduced
in this paper. It is found that the problem of free vibration changes to an uncoupled second­
order partial differential equation and a third-order set of two coupled partial differential
equations. If three displacement functions are further expanded in terms of the spherical
harmonics, the original problem is finally reduced to a second-order ordinary differential
equation and a second-order ordinary differential equation set. Since the uncoupled equa­
tion is a special case of the confluent hypergeometric differential equation, its solution can
easily be obtained. The coupled set can be solved by Frobenius power series method. Mirsky
(1964) adopted the method to solve similar equations in the analysis of free vibrations of
orthotropic cylinders. Cohen and Shah (1972) also used the method to seek the solution of
a second-order ordinary differential equation set. But the solutions they obtained were only
special cases of the perfect solution. Recently, Ding and Chen (1995) suggested a matrix
form Frobenius series method to solve such equations and got a complete solution. For
surrounding elastic medium, the Pasternak model (Pasternak 1954), which includes the
effect of shear interactions of the medium, is employed. The P-( relation is then derived
out in the spherical coordinates based on the principle of minimum potential energy. It is
shown that if only purely radial vibration is studied, as was done by Nowinski (1959), the
Pasternak model will degenerate to the Winkler one. Considering the coupled conditions
at the interface between shell and elastic medium, the frequency equations of the free
vibrations of a spherically isotropic spherical shell embedded in an elastic medium can be
explicitly expressed out. Effects of the relative parameters are then discussed in the present
paper.

2. BASIC FORMULAnONS

For a spherically isotropic elastic medium, the spherical coordinates (r, 0, fP) are
helpful with r, radial; 0, colatitudinal and fP, meridional. Assuming the center of anisotropy
be identical to the origin of the coordinates, the generalized Hooke's law is:

(Jo = AlleO+A12e<p+A13er;

(J<p = AI2eO+Alle<p+AI3er;

(Jr = AI3eO+AI3e<p+A33er;

TrO = A 44 YrO

Tr<p = A 44 Yr<p

To<p = ~(AII -A I2 )yO<p.

(1)

Here, All' A 12, A 13, A 33 , and A 44 are five independent elastic constants.
Since both the differential equations of motion and the strain-displacement relations

of an elastic medium in the spherical coordinates can be found in Lekhnitskii (1981), they
will not be repeated here. By the introduction of three displacement functions ljI, G, and w,
three displacement components in the spherical coordinates, Un Uo, and U<p (in r, 0, and fP
direction, respectively) can be decomposed as:

aljl aG
Uo = - -cosecO--afP 00

aljl aG
u<p = ao - ofP cosec O.

(2)

Substituting eqn (2) into the basic equations of the problem, after a long and complicate
derivation, the following differential equations can be obtained:
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a .. 0 ..
oe(A+r2pG)-cosece ocp (B-r2pt/J) = 0

o .. 0 ..
cosece ocp (A+r2pG)+ oe(B-r2p t/J) = 0
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(3)

=0

where p is the mass density of the elastic medium, and a dot over any quantity denotes its
derivative with respect to time t, and

A = L 1w-L2 G

B= Lst/J

L 1 = (AI3+A44)V2+AII +A 12 +2A 44

L 2 = A44Vj-(2A44-All +A12)+AllV~

L 3 = A 33 Vj-2(A 11 +A12-A13)+A44V~

L4 = (AI3+A44)V2-A44-AII-AI2+A13

L s = A44Vj-(2A44-AI1 +A12)+~(AII-A12)V~

o
V J = r-

- or

2 0 0
V 2 = r--;;-r-oor r

Vj = V~+V2

02 0 02

V~ = - +cote oll +cosec2
e~.

oe2 u Ocp2

From the first and second equation in eqns (3), we can get

where H should satisfy the following equation:

(4)

(5)

(6)

Generally, we can take H == 0 without the loss of generality of the initial dynamic problem
(Hu, 1954). Thus eqns (3) become

B-r2 pJi = 0

A+r2pG = 0

(7a)

(7b)

(7c)

It is observed that eqn (7a) is an uncoupled second-order partial differential equation
in only one displacement function t/J, whereas eqn (7b) is a second-order partial differential
equation and eqn (7c) is a third-order partial differential equation, and they are coupled
by another two displacement functions, wand G. In order to simplify eqns (7), for the free
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harmonic vibration, three displacement functions t/J, G, and IV are further expressed as the
sum of terms below (over n from 0 to 00) :

[t/J, G, w] = [V(r), VCr), W(r)]Sn(8, cp) e"vt (8)

where, Sf/(8, cp) are the spherical harmonics, Sn(8,cp) = P~'(cos8)eim'l', and r;:(cos8) are
the associated Legendre functions of the first kind; n, m are integers; i is the square root
of - I ; w represents the circular frequency of the harmonic motion; VCr), VCr) and W(r)
are unknown functions of variable r to be solved later. (In the following, for the sake of
convenience, we will write functions without their arguments, for instance, VCr) will be
written as V, etc.)

The following nondimensional quantities are defined:

_ V
V=-"

R'

h
t* =-"

R'

w wh
Q=~=-"

W
S

lW 2 '
(9)

where V2 = J A 44 /p is the elastic wave velocity, hand R are the thickness and mean radius
of the spherical shell respectively. Using eqn (9) and substituting eqns (8) into eqns (7)
yields:

and

{
eW" +2~W'+(:x2~2+PI) W-P2~O'-P3 0 = 0

~20" +2~O'+(ffe +P4)O-Ps~W'-P6 W = 0

(10)

(11 )

where prime denotes differentiation with respect to ~, and constants Pi(i = I, 2, . "",6) are
given by

f3
:x = --"

vJ:

PI = [2(f,-II-I2)-n(n+ 1)l!I4

P2 = -n(n+ 1)(f3 + 1)/.f4

P3 =n(n+I)(fl+j~+I-I3)/j~

P4 = II-I2- 2 - n(n+l)j;

Ps = 13 + 1

P6 = II +/2 +2

nQ
f3 = t*;

(12)

Now, the fundamental dynamic equations of a spherically isotropic elastic medium are
simplified to three ordinary differential equations. It is seen that eqn (10) is an independent
second-order ordinary differential equation in one function J7. Generally, eqns (11) are
coupled except for the case of n = 0, for which it degenerates to
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Solutions to eqns (10), (11), and (13) are to be given in the next section.
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(13)

3. SOLUTIONS OF DIFFERENTIAL EQUATIONS

3.1. Solutions ofeqns (10) and (13)
It is well known that both eqns (10) and (13) are special cases of the confluent

hypergeometric differential equation, their solution can be written as:

where

B Ilil (!JI;) +B I2 n I (!J(),

I
-----r; [Bnl Jry(!JO +Bn2 Yry(!J~)]'

v~

if n = 1

if n> 1
(14)

and

where

1]2 = ~[9 +2(n2 +n - 2)(f1 - j~)] > 0 (15)

(16)

(17)

andi] and n l are the first and second kind of the spherical Bessel functions, respectively,
while Jry and Yry are the first and second kind of the Bessel functions respectively. Bi/(i = 1,
2, ... ,i = 1, 2) and COi(i = 1, 2) are arbitrary constants.

3.2. Solution ofeqns (11)
When n > 0, eqns (11) are coupled by a and W. It can be observed that the two

equations of this set are of a similar form and only one regular singular point exists
(~ = 0). Therefore the Frobenius power series method can be applied to solve this ordinary
differential equation set. The general solution of the set can be expressed by the linear
combination of four independent solutions as follows (Ding and Chen, 1995) :

4

O(~) = L: CII/Oll!;
i= I

4

Wm = L: Cn! Wn!
i=J

(18)

where C!(J = I, 2, ... , 4) are arbitrary constants, an! and Wn!(J = 1, 2, ... , 4) are a
convergent, infinite series of variable ~, and they also can be treated as functions of the
circular frequency ill once the variable ~ is given.

4. PASTERNAK MODEL OF ELASTIC MEDIUM

It is worth mentioning the Winkler model of elastic foundation first. Winkler (1867)
assumed the elastic foundation consisting of closely-spaced, independent linear springs. In
this case, the relation between the pressure P and the deflection of the foundation surface
(is:

here, k is the foundation modulus.

P = k( (19)
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p

Fig. I. Actual deformation of elastic foundation.

In fact, the deformations of the elastic foundation are always such as shown in Fig. 1.
From this, Pasternak (1954) assumed the existence of shear interactions between the spring
elements. This may be accomplished by connecting the ends of the springs to a beam or
plate consisting of incompressible vertical elements, as given in Fig. 2, which deforms only
by transverse shear.

Generally, the thickness of the shear layer in the Pasternak model used to be considered
as unit (Kerr, 1964), but this is actually not the case. In the following, we will involve the
effect of the thickness and, based on the basic assumption of the Pasternak model, derive
the P-( relation by using the principle of minimum potential energy. The thickness of the
shear layer is assumed to be G, that is to say, in the present problem, the shear layer is
actually a thin spherical shell with inner radius b and outer radius b+G. According to the
definition of the shear layer, only contributions of shear deformations to strain energy are
considered, and both the effects of the displacement components in e and cp direction on
shear deformations are neglected (Pasternak, 1954). It follows that

where

" -~Inp - r sin e (in shear layer) (20)

at
('P = a~' (21)

Under the pressure pee, cp), assuming ( in the shear layer is independent of r, the total
potential energy of the foundation is:

Here, f1. is the shear modulus of the elastic medium and k is the spring constant.

p

Shear
layer

Fig. 2. Pasternak model of elastic foundation.



Spherically isotropic spherical shell vibrations

Substituting egn (20) into egn (22) gives:

here

The Euler eguation of this functional is known to be:

of 0(OF) a (OF)
o( - oe o(e - oqy 0(", = O.

Putting egn (24) into egn (25) yields:

where

(
B)2_

k = 1+ b k; K = jiB.
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(23)

(24)

(25)

(26)

(27)

In the case of spherical symmetry, ( is independent of eand qJ, then egn (26) degenerates
to that of the Winkler one. Therefore k defined by egn (27) are the same as that in egn
(19). Both k and K will be determined by methods such as experimental testing. Obviously,
if K is zero, the medium is then reduced to the Winkler type one. It can be seen that egn
(26) is different from the conventional one (Kerr, 1964) due to the inclusion of shear layer
thickness. And when the thickness is taken to be unit, this load-deformation relationship
[egn (26)] degenerates to the usual form (Kerr, 1964; Paliwal and Bhalla, 1993). In the
following analysis, we assume that the bonding between the spherical shell and elastic
medium is perfect and frictionless (Nath et al., 1987). Namely, the vibration of the shell is
affected by the elastic medium only through the normal interaction between them, i.e. the
pressure P, where also the condition ( = Ur is needed when r = b.

5. FREQUENCY EQUATIONS

Putting egns (8) into the geometric relations and these in egns (1), the expressions of
stress components on the spherical surface are given by:

(28)

where tJ; = (Jr/A13' T~o = T ro/A 44 , T;", = Tr",/A 44 •

If the spherical shell is empty inside, the boundary conditions at the inner surface of
the shell (r = a) are
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(29)

Considering the effect of the ambient elastic medium, conditions at the outer surface of the
shell (r = b) are:

(30)

where J5 = PjA 13' Furthermore, using eqns (28), the boundary conditions can be expressed
as:

2Wj~+n(n+l)Oj~+(/4ir3)W'= 0

- - - aSn - - as"
(Wj~+ Vj~ - VI)ae - (V' - Vm cosec e acp = 0

- - _ aSn - - aSn
(wg+ Vj~ - V') cosec(J-~-+ (VI - Vj~)-a(J = 0

ocp .

for ~ = t l , and

2 ~/~+n(n+ I)Oj~+(/4/13) WI +I S t2+n~~ l)j~t* W = 0
to 3

- , - _ aSn - -. aSn
(W/~+ Vj~ - V'):l(J - (VI - V/O cosec (J-a = 0

c cp

- - - aSn - - aSn
(wg + Vj~ - VI) cosec (J acp + (VI - Vm ae = 0

for ~ = t2, wherej~ = kbjA 44 andl6 = Kj(A 44h). Since

dP'" 1
sin (J d(Jn = 2n + I [n(n - m+ I)P~'+] - (n + 1)(n +m)P;;'_ d

(31a)

(31 b)

(31c)

(32a)

(32b)

(32c)

(33)

and noticing the orthogonal property of the Legendre functions, we can obtain following
equations from eqns (31a--e) and (32a--e):

Wj~+Oj~-O'=O (~=tlort2)

VI_V/~=O (~=tlort2)

(34a)

(34b)

From boundary conditions (31 a), (32a) and (34a,b) and from differential equations (10),
(11) and (13), we reach a conclusion that the free vibrations of a spherically isotropic
spherical shell embedded in an elastic medium can be divided into two classes, as the case
in vacuum (Cohen and Shah, 1972). The first class is defined by eqn (10) and condition
(34b), while the second by eqns (11) or (13) and conditions (31a), (32a) and (34a). It is
shown that the first class, which corresponds to a equivoluminal motion of the shell, is
characterized by the absence of radial component of displacement while for the second
class, the displacement has, in general, both transverse and radial components, but the
rotation has no radial component. Since the first class of vibration is exactly identical to
that in vacuum, we will not repeat it here. Details of this class can be found in Cohen and
Shah (1972), for example.

Using the results obtained in the preceeding sections and allowing for the boundary
conditions, we can obtain some systems of linear algebra equations with different sets of
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arbitrary constants. It is well known that, for each system, there exist nontrivial solutions
only when the determinant of the coefficient matrix vanishes. Therefore, the following
frequency equations are then obtained (for the second class only).

5.1. When n = 0
The corresponding frequency equation is:

IEi}1 = 0 (i,j= 1,2)

where

(35)

1
Ell = [2 + (v - 1/2) (f4/13)]J" (ext I) - U~/h)ext I Jv+ I «(Xt,),

EL = [2 + (v - I /2)(f4/13)] Yv(ext,) - (f4/f~)ext I Yv+' «(Xt d,
(36)

E~, : [2 + (v - I/2)(f4/~3)]JV(ext2) - (f4/f1)at2Jv+ 1 (ext2)+ (fs/13)Jv(ext 2),

E 22 - [2 + (v - I/2)U4/13)] Y,«(Xt2) - (f4If3)ext2Yv + 1 (at2)+Us/13) Yv(ext2)·

It is noted that eqn (35) is, in fact, the corresponding frequency equation of the purely
radial vibration of the embedded spherical shell.

5.2. When n > 0
The frequency equation is obtained as:

IEtl = 0 (i,j= 1,2 ... 4)

where

EL = 2Wn;(t l )/t, +n(n+ I)On;(td/t, +(f4/13)W~i(tl)'

E~i = Wn;(tl)/t 1 + Oni(td/t, - O~;(td,

E~; = Wn;(t2)/t2+ On;(t2)/t2- O~i(t2)'

E~i = 2 Wni(t2)/t2+n(n + I) 0"'(t2)/t2+U~/h) W~i(t2)

I st2+n(n+ 1)/6t* - ( )+ . 2 Wni t 2 •

f3 t 2

(i=1,2 ... 4)

(37)

(38)

Obviously, if both parameters of the ambient elastic medium k and K are taken to be zero,
then eqns (35) and (37) reduce to the corresponding frequency equation of free vibration
in vacuum (Cohen and Shah, 1972). It is also noted that the frequency equations will
degenerate to the corresponding ones of an embedded isotropic spherical shell upon the
following substitution:

(39)

where, Aand J1 are Lame constants.
It is noted that, Silbiger (1962) has stated in detail that the nonaxisymmetric modes

of vibrations of thin isotropic spherical shells can be obtained by the superposition of
axisymmetric ones of identical natural frequency. Since spherical isotropy does not violate
the spherical symmetry of the shell, as shown above, the integer m, which appears in the
spherical harmonics and represents the nonaxisymmetric motion (m =I 0) of the shell, is
not included in the frequency equations.
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Table I. Elastic constants of two anisotropic materials

Material

Material A
Material B

I,

3.64
20.00

j~

1.60
12.00

1.32
2.00

j~

3.76
2.00

6. NUMERICAL RESULTS AND DISCUSSION

For the second class of vibration of a spherically isotropic spherical shell embedded in
an elastic medium of Pasternak type, calculations are carried out to clarify the effects of
various parameters involved in the frequency equations. It is shown that the nondimensional
frequency 11 is only related to the nondimensional parameters 11 -16 and t*. In our calcu­
lations, two spherically isotropic materials are considered, for which the elastic constants
are listed in Table I. Material A is nearly isotropic like magnesium, while Material B is a
hypothetical one, exhibiting substantial anisotropy. Numerical results are given in the form
of figures. It is noted that, although for each frequency equation there are more than one
roots, only the smallest positive root for given parameters, which is of physical significance,
is given in figures for n = 0 as well as n > O.

6.1. n = 0
Calculations are first made for n = 0, the purely radial vibration or the breathing

mode. In this case, the nondimensional elastic foundation constant 16 has no effect on the
vibration of the spherical shell, which can be observed by looking into the frequency
equation (35). For each material, results are given for four values of thickness-to-mean
radius ratio (t*). Spectra of nondimensional frequency 11 vs nondimensional elastic foun­
dation constantj~ are shown in Figs 3 and 4.

From the results, it is shown that the nondimensional frequency 11 increases when the
nondimensional foundation constant Is grows. It is seen that each curve displayed in Figs
3 and 4 is similar to the upper branch of a parabola. It actually somehow resembles a
spring-mass system of single freedom degree, for which the curve of frequency vs spring
constant is known to be a parabola, when the mass ofthe system is given. Since the spherical
shell has stiffness itself, its free vibrational frequency does not equal zero when/s is taken
to be zero. It is also shown that the nondimensional frequency 11 increases when the
thickness-to-mean radius ratio t* of the shell increases. If the spherical shell and the
surrounding elastic medium can actually be modeled as a single spring-mass system, it will

I.6'---========="'-l

O.OO~--*,,----f;,:-----;';;---=--~lOO

Is

Fig. 3. Spectra of nondimensional frequency Q vs nondimensional elastic foundation constant Is
for breathing mode (Material A).
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3.0,....----------------,

2.0

t* =0.5
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t* =0.25

t* =0.1

O.OO!:---.,f;:----+-.~---='~--*"---:!100

is

Fig. 4. Spectra of nondimensional frequency Q vs nondimensional elastic foundation constant Is
for breathing mode (Material B).

indicate that the effective stiffness of the system grows more rapidly than its effective mass.
Moreover, the nondimensional frequency is greatly affected by the elastic constants of the
shell as Figs 3 and 4 show us. Results for Material A are lower than those for Material B to
some degree. This may be of great importance in structural design of practical engineering.
Especially, in the areas that have severe restrictions on dynamics of the structures, the
results of this example illustrate that new types composite materials may provide such
demanded conditions.

6.2. n > 0
In this case, the displacement of the shell has both transverse and radial components

as indicated in the preceding part. Therefore, unlike the breathing mode, these non-breath­
ing modes are affected by both the nondimensional foundation constants 15 and 16' For
comparison purposes, calculations are carried out both for Material A and Material B. For
each material, two ratios of thickness-to-mean radius are involved. Results are displayed
in Figs 5-8. In each figure, three curves of nondimensional frequency corresponding to
mode number n = 1,2, and 3 are given.

Figure 5 displays the spectra of nondimensional frequency n vs the nondimensional
elastic foundation constant 15 for Material A with four different values of the other non­
dimensional foundation constant 16 given in the legend. When 16 is taken to be zero, the
elastic medium is, in fact, of the Winkler type, and the corresponding results are given in
Fig. 5(a). When it is nonzero, the elastic medium is modeled as the Pasternak type and
results are given in Figs 5(b,c). Three modes corresponding to n = 1,2, and 3 are presented.
By comparing Fig. 5(a) with Fig. 5(b,c), it can be seen that there is an obviously different
point between the Winkler type medium and the Pasternak one. Especially, when/s equals
zero, the frequency of spherical shell embedded in the Winkler type elastic medium for
n = 1 is zero, as Fig. 5(a) shows, while it is not zero when the elastic medium is considered
as the Pasternak type one, as Figs 5(b,c) show. In fact, the case corresponds to a spherical
shell vibrating in vacuum when the elastic medium is treated as the Winkler type and the
foundation constant 15 is taken to be zero, for which there exists a rigid movement of the
spherical shell when n = 1. We can also observe from Fig. 5(a) that the nondimensional
frequency stays basically invariable when the foundation constant 15 is a large value (e.g.
~40). Also, the spectra curve is nearly horizontal when the foundation constant/6 is large,
as Fig. 5(c) shows us. An obvious trend in that frequency for higher mode number n is
always larger than the corresponding one for lower n, is also obtained. Spectra curves for
higher mode numbers (n ~ 4) are not presented here because they are all similar to n = 2
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(a)
1.6~-----------------'

- t*= \
--- t* = 0.25

~------I

100

Is

(b)
1.6~---------------'

- t*=\
--- t* = 0.25

1.2

n 0.8 0=3 0=2 0=\

O.OOL---,,~--....J.,.---"~---::'=-----:-!I00

Is

(c)
\.6~------------------'

- t* = \
--- t* = 0.25

\.21-

n 0.81-

/
/

0=3

\
/

0=2 0=\

"'"---------~------
0.41-

I I I I
0.0O!----:20J,,---....,4:1::-0---,,6:1::-0----:;8~O-----:-!I00

Is

Fig. 5. Spectra of nondimensional frequency Q vs nondimensional elastic foundation constant
.f, for n = 1,2,3 (Material A). (a)f~ = O. (b)f6 = 10. (C)f6 = 50.
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(a)
2.0...------------------,

- t*=1
--- t* =0.25
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n

15
100

(b)
2.0r-----------------,

- t*= 1
--- t* =0.25

1.61-----.....,..----------1

n

1.2

n=3 n=2 n=1

0.8

0.4

O.OO~--~---*.,.-----;l;;----:f::----:-!100

15

Fig. 6. Spectra of nondimensional frequency Q vs nondimensional elastic foundation constant f,
forn = 1,2,3 (Material B). (a)f6 = O. (b)/; = 10.

or 3 except for larger frequency values. By comparison of the actual and dotted lines in
Fig. 5, we can see that the frequencies for larger ratio of thickness-to-mean radius (t* = I)
are larger than those for the lower one (t* = 1/4) as that is observed for n = 0 (Figs 3 or
4).

Figure 6 displays the spectra of nondimensional frequency Q vs the elastic foundation
constant/s for Material B. Since for larger/6 the spectra stay nearly invariable, as indicated
above, only two typical values of/6 (0 and 10) are considered and the corresponding spectra
curves are given in Figs 6(a,b). Though the frequencies of Material B are higher than the
corresponding ones of Material A, there is actually no great difference between them.
Therefore, all points for results of Material A mentioned above can also be applied for
those of Material B and we do not repeat them again. Probably, the frequencies for t* = I
are higher than those for t* = 1/4.

To clarify the effect of another foundation constant/6 , calculations are then made to
give spectra of nondimensional frequency Q versus /6' Figure 7 displays the spectra of Q vs
/6 for Material A for two values oris which are given in the legend, while Fig. 8 shows
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Fig. 7. Spectra of nondimensional frequency n vs nondimensional elastic foundation constantf6
for n = I, 2, 3 (Material A). (a)ls = O. (b)ls = 10.

those for Material B. Since16 has a similar effect to15 in the frequency equation, as pointed
out earlier, similar observations are also obtained from Figs 7 and 8.

7. CONCLUSION

This paper presents an analytic three-dimensional elastic method to analyse the non­
axisymmetric free vibrations of a spherically isotropic spherical shell embedded in an elastic
medium. Therefore, it provides a basis for checking the capability of different shell theories
on this problem. It is further shown that the vibrations of embedded spherical shells can be
divided into two classes, as the case in vacuum. The first class is identical to the cor­
responding one in vacuum, and the second has changed due to the effect of the surrounding
medium.

The elastic medium is taken to be the Pasternak type and based on its basic assumptions
we rederive the pressure deflection relation by using the principle of minimum potential
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Fig. 8. Spectra of nondimensional frequency n vs nondimensional elastic foundation constantj~

for n = 1,2,3 (Material B). (a) 15 = O. (b) 15 = 10.

energy. Though the resulting formula is similar to that presented by Pasternak (1954), it is
found that more subtle effects are brought by the shear layer thickness.

One point that should be mentioned is that, for the second class, the embedded
spherical shell has zero vibrational frequency when the mode number n = I and when both
foundation constants are taken to be zero, for which the shell is, in fact, in vacuum. The
case corresponds to the rigid movement of the shell. Since the two foundation constants
have similar effects in the frequency equation [eqn (37)], their results are actually the same
as Figs 5-8 show us.

From the results, we can also see that for large value ofi6 oris, the spectra curve ofn
vsis or i6 is nearly a horizontal line. That is to say, the frequency stays basically invariable
wheni6 oris is large.

It is seen from the results, that both the elastic constants of the spherical shell and the
ratio of thickness-to-mean radius of the shell have significant effects on the free vibration
frequency of embedded spherical shells. This may be of great importance in practical
engineering.



2590 Ding Haojiang and Chen Weiqiu

Though there are works related to free vibration problems of embedded cylindrical
shell [see Men and Yuan (1990), for example], it is very regretable that no available works
on spherical shells can be found by the authors, namely, comparisons cannot be made with
results obtained from relevant literature. Therefore, shell theory analysis of embedded
spherical shells is needed and will be presented in another paper.
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